Linear Algebra with Sub-linear Zero-Knowledge Arguments

نویسنده

  • Jens Groth
چکیده

We suggest practical sub-linear size zero-knowledge arguments for statements involving linear algebra. Given commitments to matrices over a finite field, we give a sub-linear size zero-knowledge argument that one committed matrix is the product of two other committed matrices. We also offer a sub-linear size zero-knowledge argument for a committed matrix being equal to the Hadamard product of two other committed matrices. Armed with these tools we can give many other sub-linear size zero-knowledge arguments, for instance for a committed matrix being upper or lower triangular, a committed matrix being the inverse of another committed matrix, or a committed matrix being a permutation of another committed matrix. A special case of what can be proved using our techniques is the satisfiability of an arithmetic circuit with N gates. Our arithmetic circuit zero-knowledge argument has a communication complexity of O( √ N) group elements. We give both a constant round variant and an O(log N) round variant of our zero-knowledge argument; the latter has a computation complexity of O(N/ log N) exponentiations for the prover and O(N) multiplications for the verifier making it efficient for the prover and very efficient for the verifier. In the case of a binary circuit consisting of NAND-gates we give a zero-knowledge argument of circuit satisfiability with a communication complexity of O( √ N) group elements and a computation complexity of O(N) multiplications for both the prover and the verifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-linear Size Pairing-based Non-interactive Zero-Knowledge Arguments

We construct non-interactive zero-knowledge arguments for circuit satisfiability and arithmetic circuits with perfect completeness, perfect zero-knowledge and computational (co-)soundness. The non-interactive zeroknowledge arguments have sub-linear size and very efficient public verification. Our construction uses bilinear groups and is only proven secure in the generic group model, but does no...

متن کامل

Short Pairing-Based Non-interactive Zero-Knowledge Arguments

We construct non-interactive zero-knowledge arguments for circuit satisfiability with perfect completeness, perfect zero-knowledge and computational soundness. The non-interactive zero-knowledge arguments have sub-linear size and very efficient public verification. The size of the non-interactive zero-knowledge arguments can even be reduced to a constant number of group elements if we allow the...

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle

A shuffle of a set of ciphertexts is a new set of ciphertexts with the same plaintexts in permuted order. Shuffles of homomorphic encryptions are a key component in mix-nets, which in turn are used in protocols for anonymization and voting. Since the plaintexts are encrypted it is not directly verifiable whether a shuffle is correct, and it is often necessary to prove the correctness of a shuff...

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009